Site-selective inhibition of plastid RNA editing by heat shock and antibiotics: a role for plastid translation in RNA editing.
نویسندگان
چکیده
RNA editing in higher plant plastids changes single cytidine residues to uridine through an unknown mechanism. In order to investigate the relation of editing to physiological processes and to other steps in plastid gene expression, we have tested the sensitivity of chloroplast RNA editing to heat shock and antibiotics. We show that heat shock conditions as well as treatment of plants with prokaryotic translational inhibitors can inhibit plastid RNA editing. Surprisingly, this inhibitory effect is confined to a limited number of plastid editing sites suggesting that some site-specific factor(s) but none of the general components of the plastid RNA editing machinery are compromised. Contrary to previous expectations, our results provide evidence for a role of plastid translation in RNA editing.
منابع مشابه
An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit psbF Transcript Editing.
Loss-of-function mutations in ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 (ORRM6) result in the near absence of RNA editing of psbF-C77 and the reduction in accD-C794 editing in Arabidopsis (Arabidopsis thaliana). The orrm6 mutants have decreased levels of photosystem II (PSII) proteins, especially PsbF, lower PSII activity, pale green pigmentation, smaller leaf and plant sizes, and retarded growt...
متن کاملPlastid signalling under multiple conditions is accompanied by a common defect in RNA editing in plastids
Retrograde signalling from the plastid to the nucleus, also known as plastid signalling, plays a key role in coordinating nuclear gene expression with the functional state of plastids. Inhibitors that cause plastid dysfunction have been suggested to generate specific plastid signals related to their modes of action. However, the molecules involved in plastid signalling remain to be identified. ...
متن کاملTransfer of plastid RNA-editing activity to novel sites suggests a critical role for spacing in editing-site recognition.
RNA editing in higher plant plastids alters mRNA sequences by C-to-U conversions at highly specific sites through an unknown mechanism. To elucidate how the cytidine residues to be edited are specifically recognized and distinguished from other cytidines in close proximity, we have changed in vivo the distances of two plastid RNA-editing sites from their essential upstream cis-acting sequence e...
متن کاملIdentification of the chloroplast adenosine-to-inosine tRNA editing enzyme.
Plastids (chloroplasts) of higher plants exhibit two types of conversional RNA editing: cytidine-to-uridine editing in mRNAs and adenosine-to-inosine editing in at least one plastid genome-encoded tRNA, the tRNA-Arg(ACG). The enzymes catalyzing RNA editing reactions in plastids are unknown. Here we report the identification of the A-to-I tRNA editing enzyme from chloroplasts of the model plant ...
متن کاملPlastid Transcriptomics and Translatomics of Tomato Fruit Development and Chloroplast-to-Chromoplast Differentiation: Chromoplast Gene Expression Largely Serves the Production of a Single Protein W OA
Plastid genes are expressed at high levels in photosynthetically active chloroplasts but are generally believed to be drastically downregulated in nongreen plastids. The genome-wide changes in the expression patterns of plastid genes during the development of nongreen plastid types as well as the contributions of transcriptional versus translational regulation are largely unknown. We report her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 26 5 شماره
صفحات -
تاریخ انتشار 1998